

Social Research with Quantitative Methods

Dr Alan Marshall

Q-Step Director

**A step-change in
quantitative social
science skills**

Funded by the
Nuffield Foundation,
ESRC and HEFCE

**THE UNIVERSITY
of EDINBURGH**

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

Exercise 1: Life expectancy calculator

- Use one of the links below to calculate your life expectancy:
- <https://www.bbc.co.uk/news/health-44107940>
- Calculate your life expectancy.....
- Discuss the result with whoever is next to you
- Fill out the questions in exercise 1

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

What is life expectancy?

Life expectancy

QUESTION

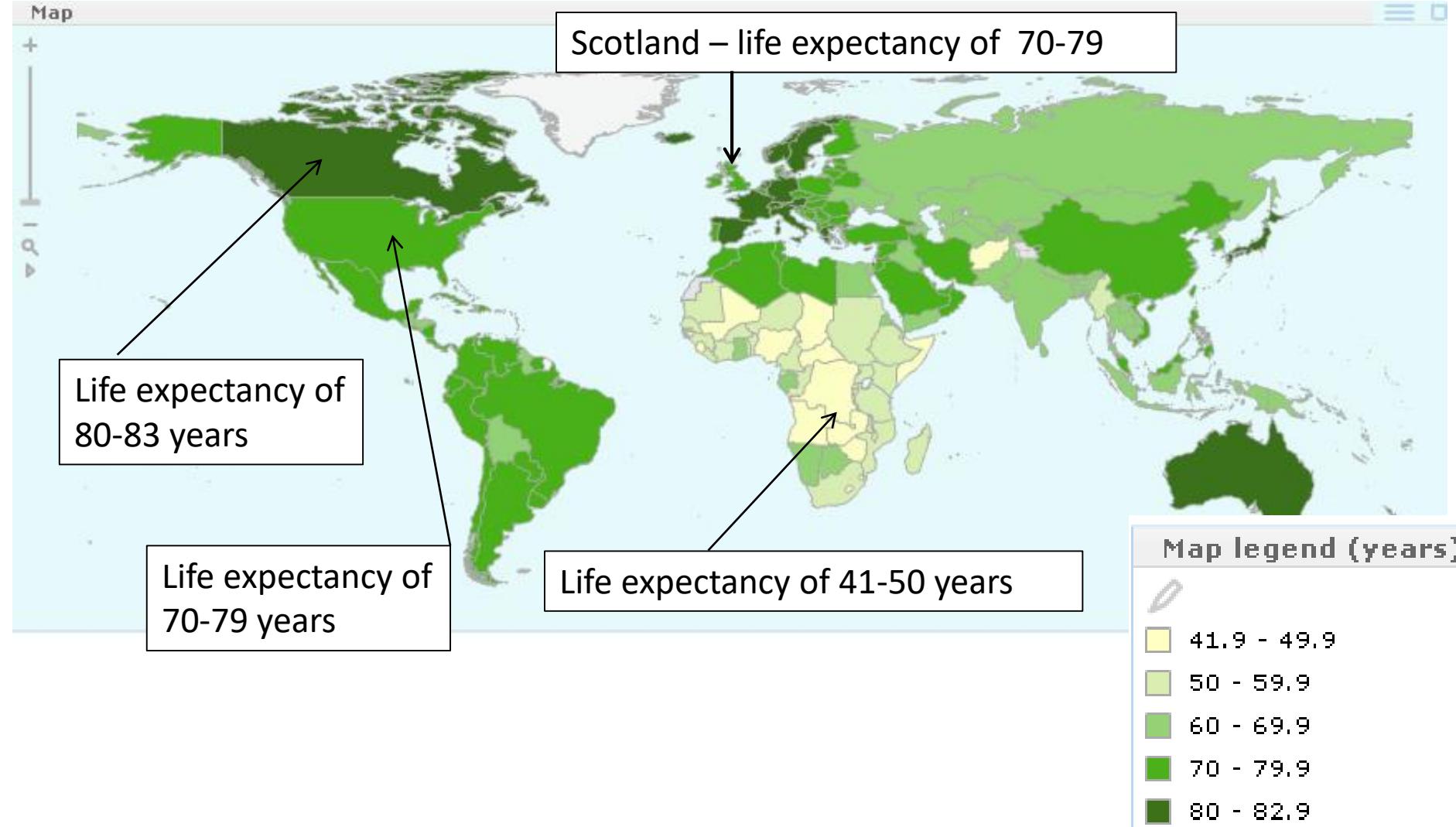
THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

- A measure of the number of years a person of a given age in a population can be expected to live based on the age-specific mortality rates for that population
- Age specific mortality rate is simply the number of deaths at a particular age divided by the population at that age
- Life expectancy can be calculated for any age, but the most commonly used is **Life Expectancy at Birth**
- Typically this is the number of years a new born would be expected to live if they experienced the **current** age-specific mortality rates over the course of their life
- Usually calculated separately for men and women reflecting their different mortality experience

Life expectancy across the World!



THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

Life expectancy

Extremes

- Japan (2008) m=78.7 f=85.6
- Zambia (2008) m=38.5 f=38.7
- Some key advantages of life expectancy as a mortality measure
 - It is age standardised and so can be used as a basis for comparing populations.
 - Life expectancy at birth provides a single figure summary of a populations mortality experience.
- Most countries have experienced major improvements in life expectancy over the last century. The main factor initially is a reduction in the level of infant mortality. For developed countries, more recent improvements have come through a decline in mortality at oldest ages.
- Exercise 2: Using a life table to explore life expectancy

What is a life table?

- Life tables are based on the probability of dying between one age & the next age
- We create a **hypothetical cohort of new-borns (usually 100,000) and then ageing them and subjecting them to the current age specific mortality rates until they are all dead.**
- Life tables consist of a set of columns – most of these can be calculated from any other.
- **The only raw data required are a set of Age-Specific Mortality Rates (ASMRs)**
- The columns of the lifetable provide some very useful information

Life table calculations

Exact age 4				
Exact age 3				
Exact age 2			99,008	
Exact age 1		99,092		
Exact age 0	100,000			
	Year 1	Year 2	Year 3	Year 4

Apply mortality rates
To reduce initial cohort
from 100,000 to 0

On the way to calculating a life table we can access some other very useful information including:

The number of people still alive at a particular age

The number of people who died between two ages

The probability of surviving between two age (probabilities vary between 0 and 1)

A life table shows all the above information and is a wealth on information!

ONLY DATA
REQUIRED

Period Abridged Life Table: England & Wales 2001 (males)

FY
I

Age	Age interval	Age Specific Mortality Rate	Average proportion of period x to $x+n$ lived by those who die	Probability of dying between exact ages (x & $x+n$)	Probability of surviving between exact ages (x & $x+n$)	Persons alive at exact age x	No. of deaths between exact ages (x & $x+n$)	No. of person years lived between exact ages (x & $x+n$)	Total no. of person years left to live after exact age x	Life expectancy at exact age x
0	1	$\text{n}M_x$ 0.006020	$\text{n}a_x$	$\text{n}q_x$	$\text{n}p_x$	l_x 10000	$\text{n}d_x$	$\text{n}L_x$	T_x	e_x
5	5	0.000254								
10	5	0.000111								
15	5	0.000180								
20	5	0.000557								
25	5	0.000792								
30	5	0.000934								
35	5	0.001119								
40	5	0.001329								
45	5	0.001883								
50	5	0.003062								
55	5	0.004661								
60	5	0.007789								
65	5	0.012834								
70	5	0.021083								
75	5	0.036263								
80	5	0.061474								
85	infinite	0.096576								
		0.187934								

Age 1 to
5 (1+4)

x	n
0	1
1	4
5	5
10	5
15	5
20	5
25	5
30	5
35	5
40	5
45	5
50	5
55	5
60	5
65	5
70	5
75	5
80	5
85	infinite

Deaths / Population
0.5 – half pop died
85+ rate is 0.1879 (18%)

All dead!

Radix: initial
population

ONLY DATA
REQUIRED

Period Abridged Life Table: England & Wales 2001 (males)

FY
I

Age	Age interval	Age Specific Mortality Rate	Average proportion of period x to $x+n$ lived by those who die	Probability of dying between exact ages (x & $x+n$)	Probability of surviving between exact ages (x & $x+n$)	Persons alive at exact age x	No. of deaths between exact ages (x & $x+n$)	No. of person years lived between exact ages (x & $x+n$)	Total no. of person years left to live after exact age x	Life expectancy at exact age x
x	n	${}_nM_x$	${}_n\alpha_x$	${}_nq_x$	${}_n p_x$	${}_n l_x$	${}_n d_x$	${}_n L_x$	${}_n T_x$	${}_n e_x$
0	1	0.006020		0.005988		10000				
1	4	0.000254		0.001017						
5	5	0.000111		0.000555						
10	5	0.000180		0.000897						
15	5	0.000557		0.002782						
20	5	0.000792		0.003954						
25	5	0.000934		0.004660						
30	5	0.001119		0.005582						
35	5	0.001329		0.006622						
40	5	0.001883		0.009372						
45	5	0.003062		0.015191						
50	5	0.004661		0.023038						
55	5	0.007789		0.038200						
60	5	0.012834		0.062176						
65	5	0.021083		0.100138						
70	5	0.036263		0.166242						
75	5	0.061474		0.266424						
80	5	0.096576		0.388968						
85	infinite	0.187934		1.000000						

All dead!

Probabilities applied
to radix

Probability – how likely something is
0 is impossible
1 is certain

Why is the final probability 1?

Because no one lives forever!

Period Abridged Life Table: England & Wales 2001 (males)

KEY MEASURE DERIVED

of EDINBURGH

Q-Step

A step-change in
lative social
e skills
d by the
Nuffield Foundation,
ESRC and HEFCE

Abridged life table for MALES in England and Wales (2001)

ONLY DATA
REQUIRED

Age	Age interval	Age Specific Mortality Rate	Average proportion of period x to x+n lived by those who die	Probability of dying between exact ages (x & x+n)	Probability of surviving between exact ages (x & x+n)	Persons alive at exact age x	No. of deaths between exact ages (x & x+n)	No. of person years lived between exact ages (x & x+n)	Total no. of person years left to live after exact age x	Life expectancy at exact age x
x	n	${}_nM_x$	${}_n\bar{a}_x$	${}_nq_x$	${}_n\bar{p}_x$	${}_l_x$	${}_n\bar{d}_x$	${}_nL_x$	T_x	e_x
0	1	0.006020	0.1	0.005988	0.994012	100000	599	99461	7594213	75.94
1	4	0.000254	0.4	0.001017	0.998983	99401	101	397362	7494752	75.40
5	5	0.000111	0.5	0.000555	0.999445	99300	55	496363	7097390	71.47
10	5	0.000180	0.5	0.000897	0.999103	99245	89	496002	6601027	66.51
15	5	0.000557	0.5	0.002782	0.997218	99156	276	495090	6105025	61.57
20	5	0.000792	0.5	0.003954	0.996046	98880	391	493423	5609934	56.73
25	5	0.000934	0.5	0.004660	0.995340	98489	459	491298	5116511	51.95
30	5	0.001119	0.5	0.005582	0.994418	98030	547	488783	4625213	47.18
35	5	0.001329	0.5	0.006622	0.993378	97483	646	485801	4136431	42.43
40	5	0.001883	0.5	0.009372	0.990628	96837	908	481918	3650630	37.70
45	5	0.003062	0.5	0.015191	0.984809	95930	1457	476006	3168712	33.03
50	5	0.004661	0.5	0.023038	0.976962	94473	2176	466921	2692706	28.50
55	5	0.007789	0.5	0.038200	0.961800	92296	3526	452666	2225785	24.12
60	5	0.012834	0.5	0.062176	0.937824	88770	5519	430053	1773119	19.97
65	5	0.021083	0.5	0.100138	0.899862	83251	8337	395413	1343065	16.13
70	5	0.036263	0.5	0.166242	0.833758	74914	12454	343437	947652	12.65
75	5	0.061474	0.5	0.266424	0.733576	62460	16641	270700	604215	9.67
80	5	0.096576	0.5	0.388968	0.611032	45819	17822	184542	333515	7.28
85	infinite	0.187934		1.000000	0.000000	27997	27997	148974	148974	5.32

LE Birth=75.9

LE 65 = 75.9

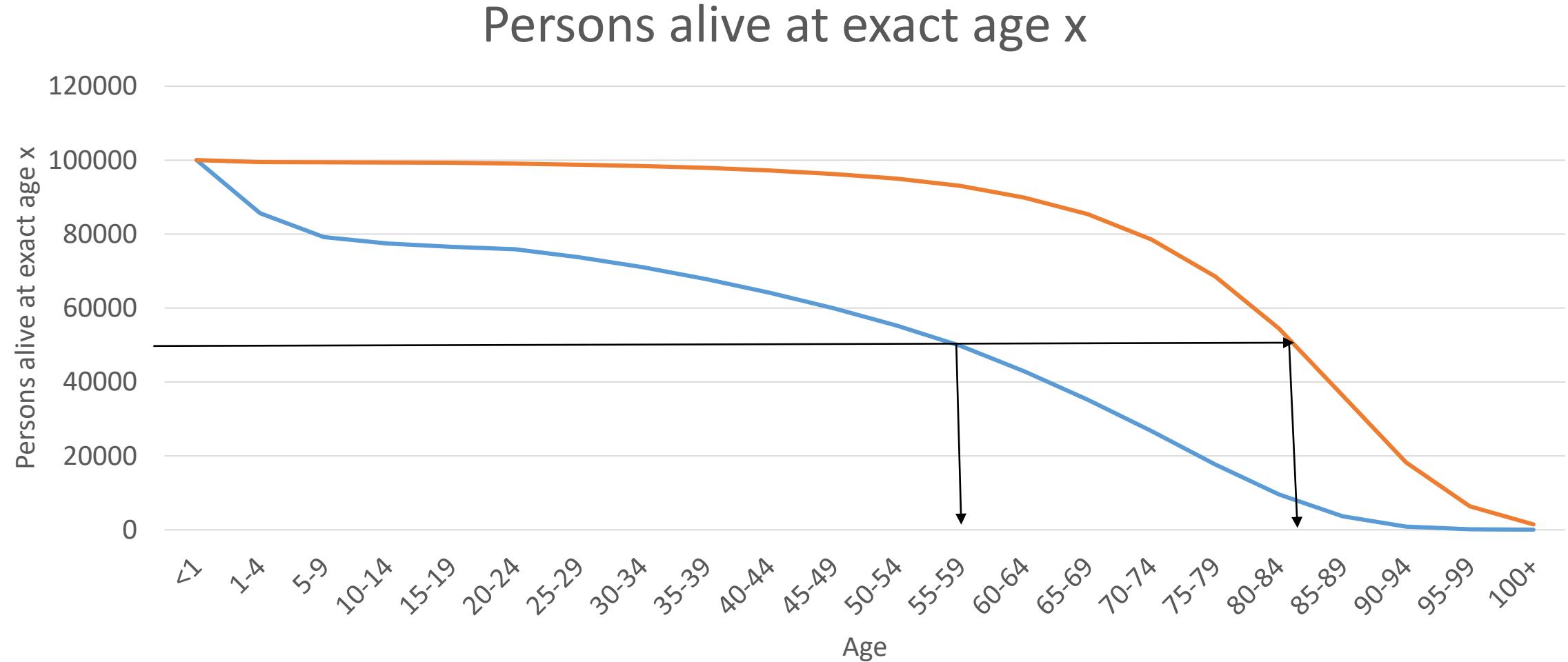
Exercise 2: Analysing the life tables of Afghanistan and UK

- Open the Excel spreadsheet ‘Life tables exercise’
- Follow the instructions in the worksheet
- Call me or one of the tutors over if you get stuck!
- Discuss the answers with the person(s) next to you and jot answers down on the worksheet

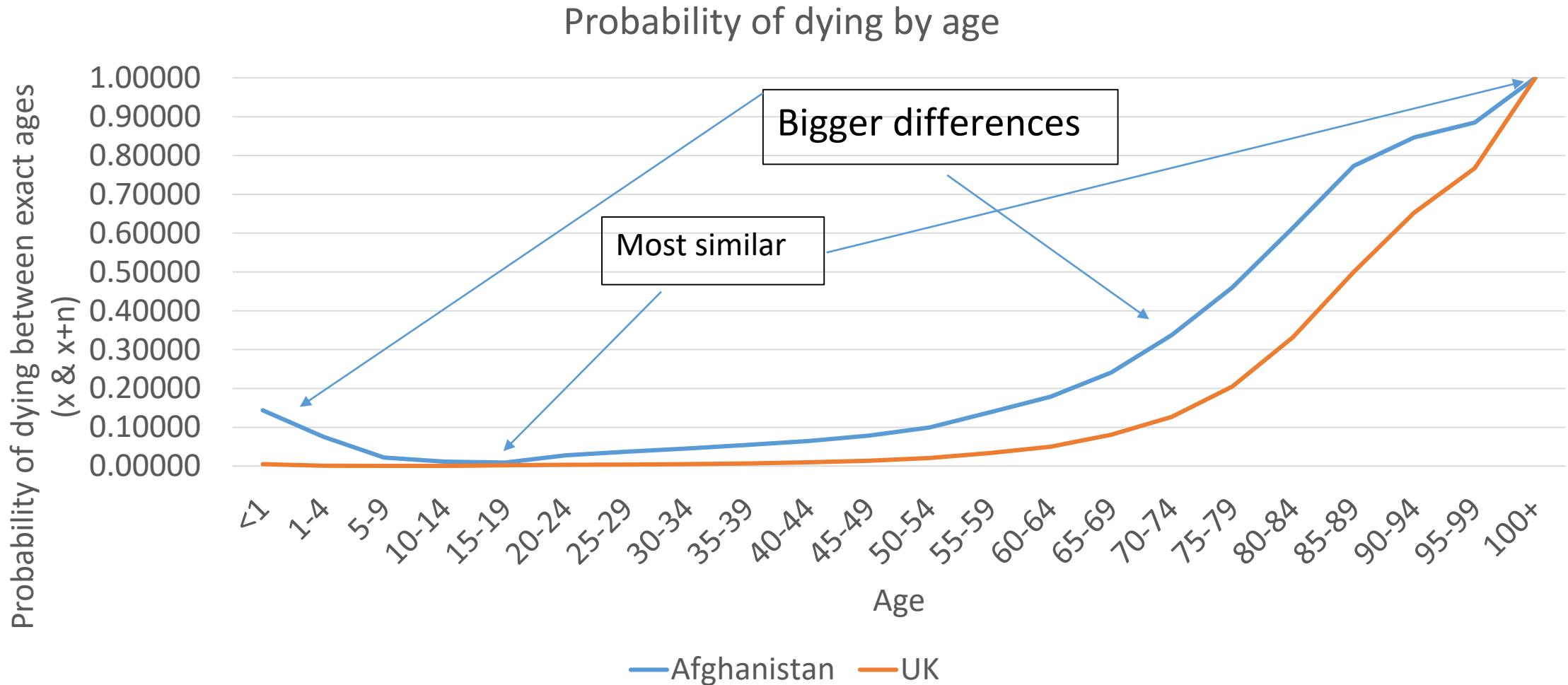
Exercise 2

Life table statistic	United Kingdom	Afghanistan
Life expectancy at age 0	78.0	46.6
Life expectancy at age 1	77.4	53.3
How many of the original 10,000 people have died in the first year of life? Hint use column F	512	14,366
By which age have half the original cohort of 10,000 people died? Hint; use the Probability of dying graph	80-84	55-59
What is the probability of a baby dying in the first year of life? Hint; Use column D.	0.0051 (less than 1% chance)	0.1437 (14% chance)
What is the probability of a man dying at age 15? Hint; Use column D.	0.0023 (less than 1%)	0.0091 (less than 1%)

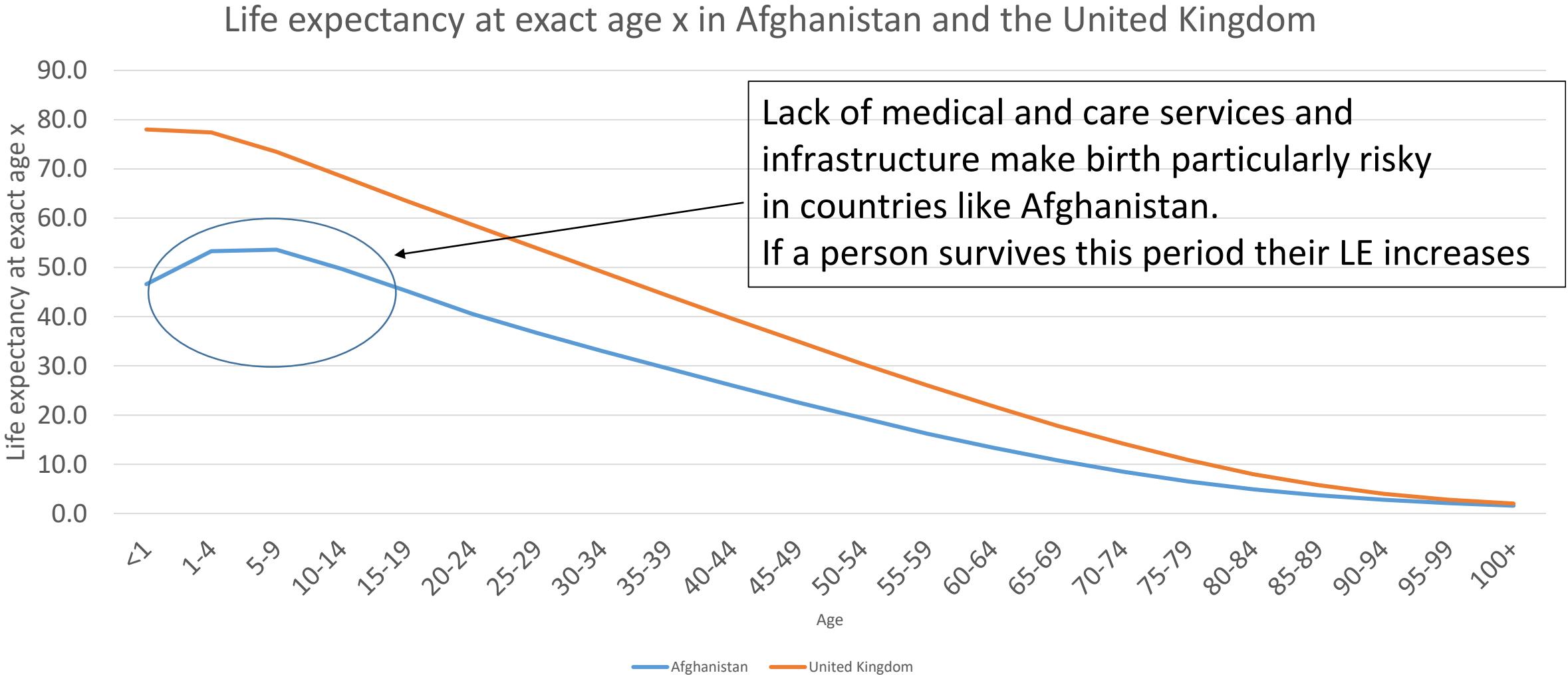
Age at which half the cohort have died



THE UNIVERSITY
of EDINBURGH



A step-change in
quantitative social
science skills


Funded by the
Nuffield Foundation,
ESRC and HEFCE

Probability of death by age

Life expectancy

Life expectancy

... is an average

- Most Afghans get older than 50
- Some die in childhood

... is low when child-deaths are common

- It is low in Afghanistan
not because all die a bit earlier
- But because
some die much younger

The 2016 data has male life expectancy at birth in the UK at 79.7 and in Afghanistan at 61. Does this mean babies born in 2016 will (on average) live to these ages?

Health

10m alive in Britain today will live to be more than 100 years old

More than 10 million people alive today will live to be more than 100 years old, government figures suggest.

Share: [Link](#) | [Email](#) | [Print](#)

[f Recommend](#) 209

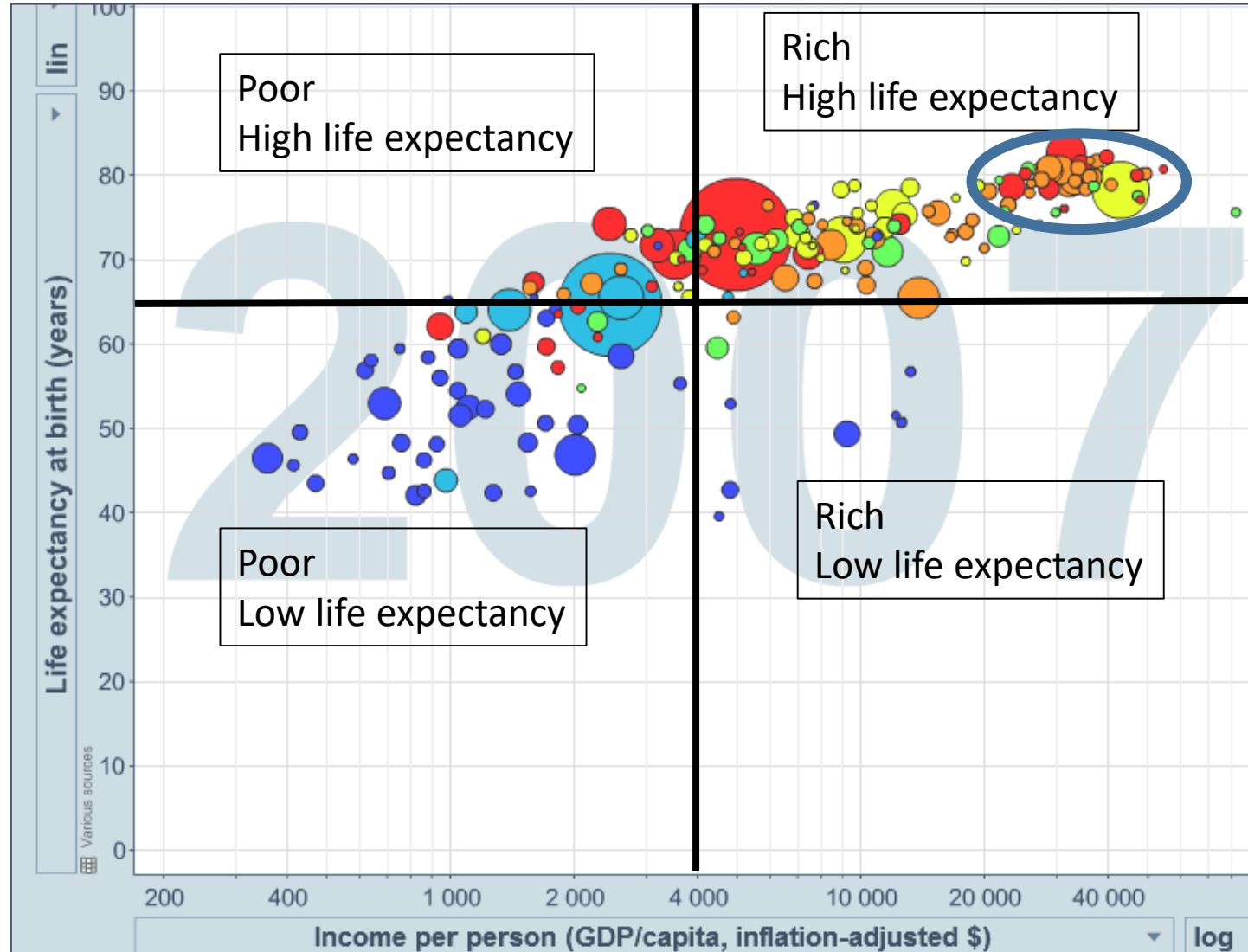
[Tweet](#) 112

Health

News » UK News » Personal Finance » Pensions »

World AIDS Day
2010

Experts said the rise in those aged over 100 years old has profound social, economic and financial implications. Photo: RODGER TAMBLYN


Life tables tell us average years of Life, IF.....

A baby experienced the mortality rates that we now observe....

Mortality rates have steadily fallen over the past two decades

If this continues we'd expect a baby born in 2016 to live beyond 79

Life expectancy (years)

Source [Gapminder](#)

Income per person (comparable dollars per year)

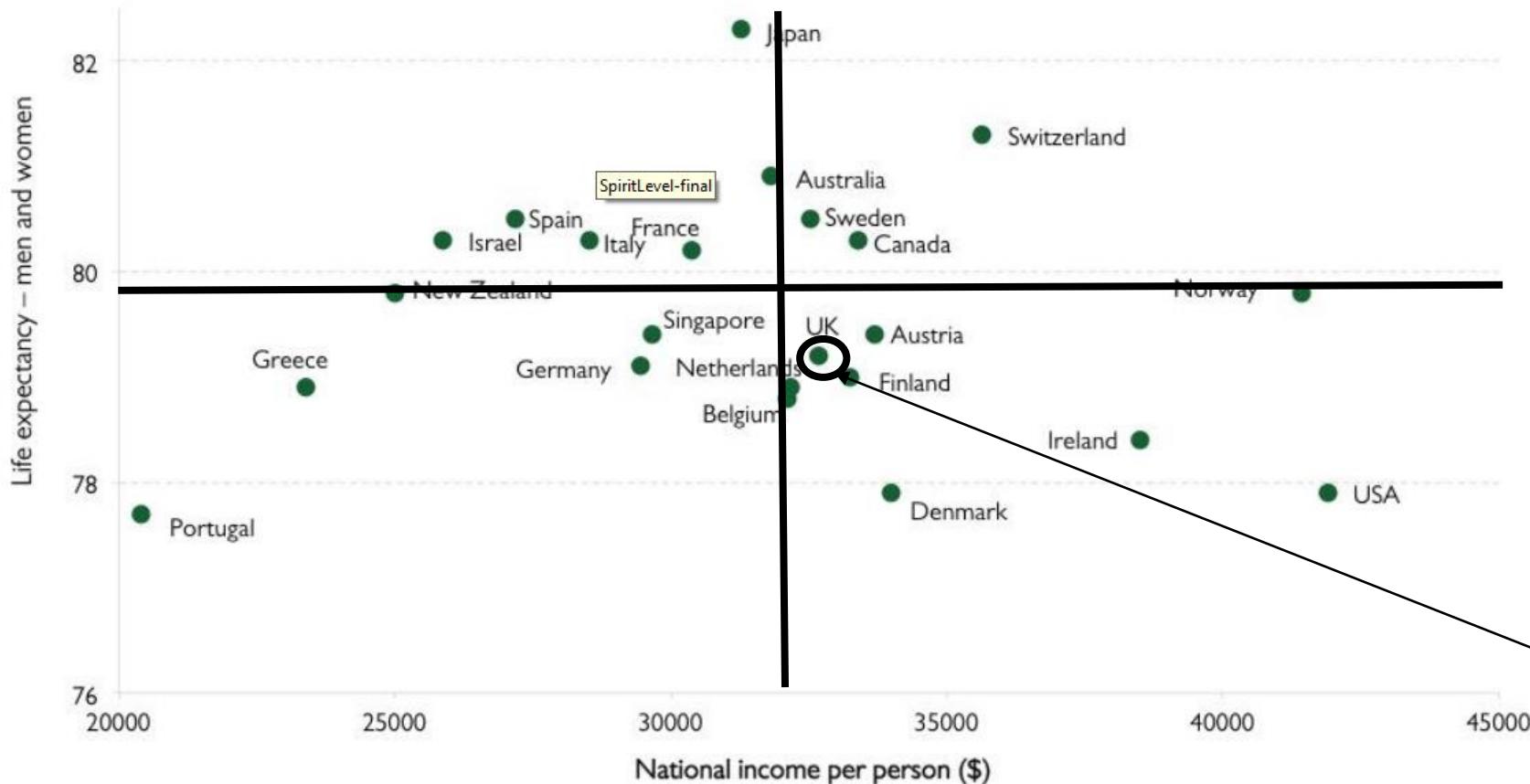
THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

Rising wealth goes together
with rising life expectancy

Very few countries are:


Poor with high life expectancy
Rich with low life expectancy

National wealth leads to:
Improved infrastructure
Better medical services
Increased access to foods

<https://www.youtube.com/watch?v=jbkSRLYSOjo>

What about the most wealthy
countries?

Health is not related to income differences between the richest countries

No clear pattern

Among the richest countries:

Richer have high and low Life exp
Poorer have high/low Life exp

Other factors involved.....

How is health care provided?
Diet?
Social care in old age?

What about within the UK?

FRONT PAGE

NEWS

SPORT

3AM

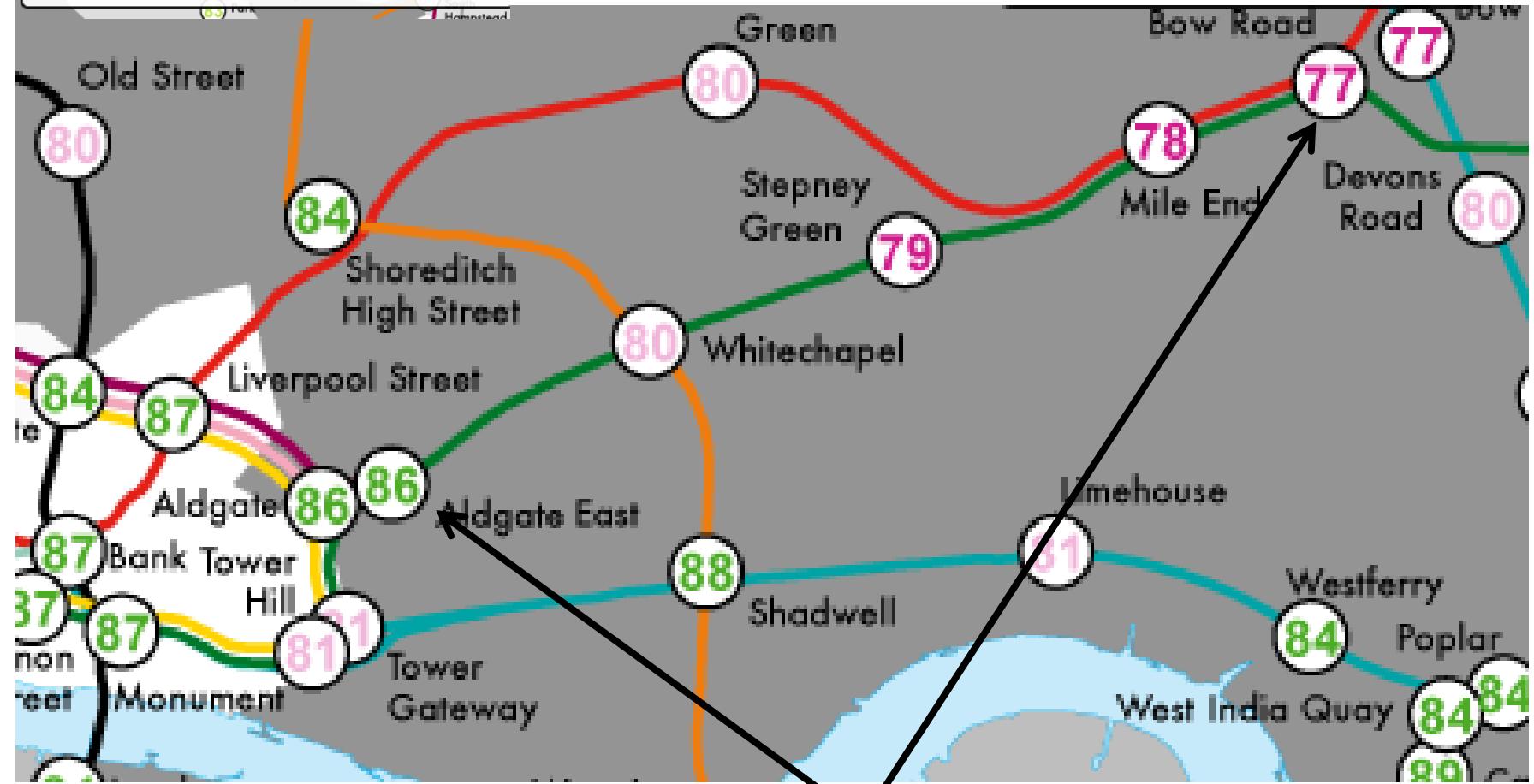
TV

LIFESTYLE

MONEY

PLAY

OPINION


North-South divide's life expectancy gap now at a 40-year-high

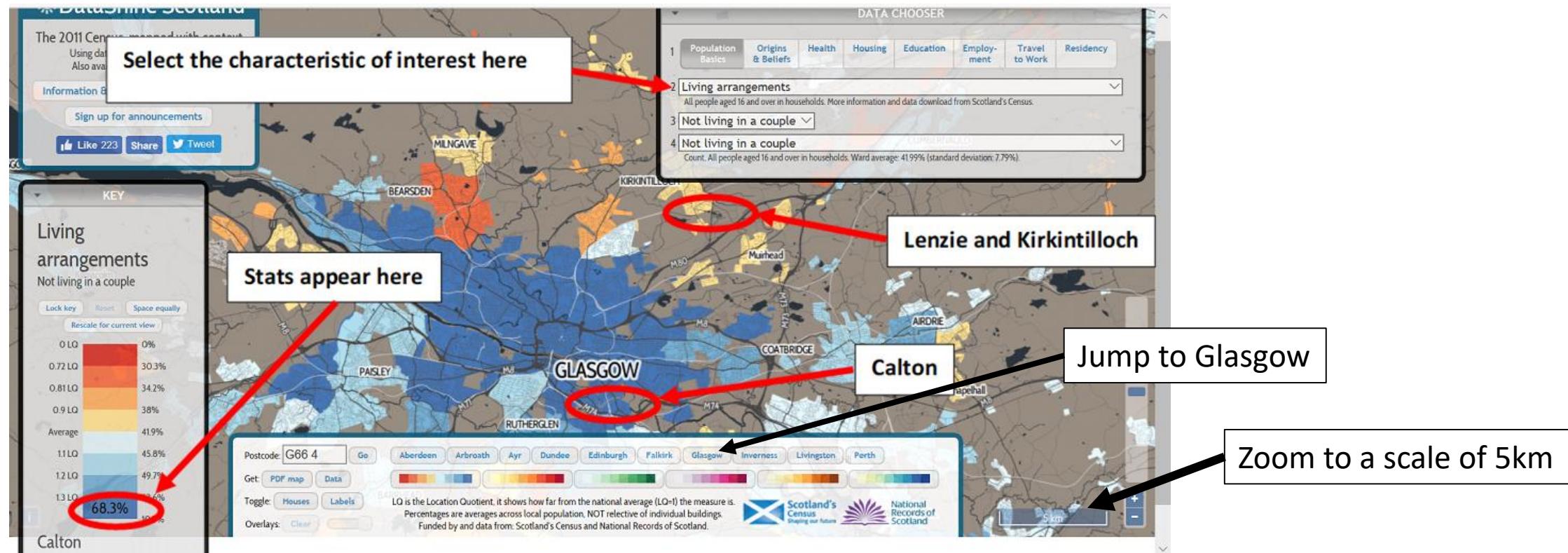
AROUND 37,000 more people a year go to their graves early in the North compared with the South, a grim health report reveals today.

 Tweet 0

 Like 0

Ten year difference in life expectancy travelling 4 stops on the District line

Glasgow: health inequalities


- Glasgow has particularly poor health outcomes relative to the UK and Europe
- And very strong inequalities; life expectancy of **54 in the Calton area of Glasgow** - 28 years less than that in **Lenzie (82)** a few miles away.

Red Road flats - Glasgow

Why do we see such stark inequalities in life expectancy in the UK?

Exercise 3 results

Characteristic	A: Lenzie and Kirkintilloch South (%)	B: Calton (%)
Population basics, Living arrangements, Not living as a couple	39.1	68.3
Population basics, Age structure, Mean age (average age)	42.1	36.8
Employment, Economic Activity, Economically active, Unemployed	3.8	7.5
Employment, National Statistics Socio-economic classification, Routine Occupations (this is unskilled work)	6.9	18.3
Employment, National Statistics Socio-economic classification, Higher Managerial and Professional Occupations	2.4	0.5
Housing, Tenure – households, Social Rented	11.3	51.9
Housing, Person per room – Households, Over 1.5 persons per room	0.3	0.9
Housing, Central heating, No central heating	0.9	4.9
Health, Long term health problem or disability, Day to day activities limited a lot	7.6	16.4

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

<http://www.youtube.com/watch?v=KvwIW2dlUj8>

- Andrew Marr: this is Britain (BBC)
- Discussion of the factors driving inequalities in life expectancy across markers of individual socio-economic position, behaviour and place

Why are there differences in life expectancy across the UK?

- **Compositional factors (individual)**
 - Social and economic characteristics of the *individuals* living in particular areas influences health
 - Job, housing, wealth, lifestyle choices (exercise, smoking drinking), conditions in childhood
- **Contextual factors (area)**
 - A characteristic of the *area* (physical, economic or social environment) influences health
- Not mutually exclusive and some factors overlap (e.g. unemployment)

Context: Built environment, services, aesthetic quality

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

Toxteth (Liverpool)
Life expectancy 69.5 (Males)

Kensington (London)
Life expectancy =85.1
(Males)

Availability of food

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

Social statistics are not value-free

“Statistics are pervasive and powerful, but often misleading or misunderstood, no more so than when they concern society”

Danny Dorling and
Ludi Simpson

Simpson, L., Dorling, D. (1999) Statistics in Society: the arithmetic of politics. Hodder. London.

Theory as well as statistics are crucial to answering social research questions

Statistics in the media and in policy debates.....

The screenshot shows the BBC News website. At the top, there is a navigation bar with links for BBC, Sign in, News, Sport, Weather, iPlayer, TV, and Radio. Below this is a red header bar with the BBC News logo and a bell icon. The main content area has a red background and features a headline: "How your heart age is key to heart attack or stroke risk". Below the headline is a timestamp: "4 September 2018". To the right of the timestamp are social media sharing icons for Facebook, Messenger, Twitter, and Email, followed by a "Share" button. The main article image is a 3D rendering of a human torso showing the heart and surrounding organs in red and orange colors.

Predict 'heart age' using lifestyle choices
Secondary data – quantitative analysis
Q-Step degree allows you to replicate analysis!

Social statistics reflect the motives of the collector/analyst.....

A screenshot of a BBC News article. The header includes the BBC logo, a sign-in button, and navigation links for News, Sport, Weather, iPlayer, TV, and Radio. Below the header is a red banner with the word 'NEWS' in white. Underneath the banner is a navigation bar with links for Home, UK, World, Business, Politics, Tech, Science, Health, and Family & Education. The main title of the article is 'How your heart age is key to heart attack or stroke risk'. Below the title is a timestamp '4 September 2018' and sharing icons for Facebook, Twitter, Email, and a 'Share' button. The main image is a red-toned illustration of a human torso showing the heart and surrounding vessels.

Predict 'heart age' using **social circumstances**
Secondary data
Or better combine both social and lifestyle choices

How to improve your heart health:

- Earn more money
- Own your own house
- Avoid damp/cold housing
- Live in an affluent area
- Work in a rewarding job
- Avoid unskilled occupations
- Live with your partner/spouse
- Work in a permanent job
- Enjoy an active social life
- Make sure you have a pension

THE UNIVERSITY
of EDINBURGH

A step-change in
quantitative social
science skills

Funded by the
Nuffield Foundation,
ESRC and HEFCE

What next?

- Find out more about Q-Step and our degrees in the poster session and in the final talk!
- Extend the analysis you have undertaken today
 - Tips and resources on worksheet
- Submit a report (2 sides) to us by the end of the year
- Prize for the best report!